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The error introduced by using the differential method to handle reaction rate data from
reactors operated at finite conversion in order to establish the rate equation is considered.
A general method of evaluating this error is developed and several of the more typical
kinetic models are analyzed. The results show that even for reversible reactions and for
kinetics of the Langmuir-Hinshelwood type with strong adsorption of reactants or prod-
ucts the differential method can be used up to rather large conversions, about 159 for

most cases.

Although the 1results are developed for plug-flow tubular reactors, they can easily be

extended to bateh systems.

InTrRODUCTION

Differential reactors are frequently pre-
ferred in carrying out kinetic studies in flow
systems because the differential method
of handling reaction rate data is more simple,
direct, and sensitive than the integral
method (7, 2). Strictly speaking, no real
reactor is differential since it must be oper-
ated at finite conversion, so, “differential
reactors’” are only an approach to the con-
cept of differential reactor.

Not too much attention has been given
to the problem of getting a criterion to
establish whether a reactor can be considered
as differential from a practical point of view.
There are two limiting situations: operation
at relatively large conversions impairs the
concept of differential reactor and so in-
creases the systematic error introduced when
the differential method is used to analyze
the reaction rate data. On the other hand,
decreasing conversion to very small values
usually increases the experimental error to
undesirable values. Then the necessity
arises of setting a suitable range of con-
versions to operate in the experimental
work, and it can be done by determining the
systematic error as a funection of conversion
and taking into account the effect of con-
version on the experimental error of mea-
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sured reaction rates for a given system.

The magnitude of that systematic error
has been considered by Pauls (3) for the
rate equation for the hydrogenation of
ethylene

r o= kpApu
14 KBpB

De Tar and Day (4) studied this error but
for rate models of little use in chemieal
engineering,

In the present paper, a general method
of evaluation of the systematic error is
developed and applied to several of the
more typical kinetic models in chemical
engineering,

Considering that it is impossible to carry
out a completely quantitative treatment
including the numerous variables involved,
some restrictions are assumed, as pointed
out below. Among them, isothermal oper-
ation is by far the most severe one. Due to
the exponential effect of temperature on
reaction rate, in many cases thermal effects
can be a more restrictive criterion than
conversion level in determining the errors
involved in differential reactor operation and
much care should be taken with respect to
this point.

However, the magnitude of temperature
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gradients inside laboratory tubular reactors
is not fixed by conversion level only, and
very often it can be reduced to reasonable
values by using a small reactor diameter
and proper dilution of reactants in the feed.
For the case of heterogeneous gas—solid
catalytic reactions, temperature gradients
can also be reduced by strong dilution of the
catalyst with particles of an inert solid, in
order to make smaller the heat generation
per unit volume of bed.

The following development was made to
help to choose on a rational basis the range
of conversions to operate in a real differential
reactor. Although the development has been
made for plug flow tubular reactors, the
results can be extended to batch systems.

NOMENCLATURE

a, b, s Stoichiometric coefficients for
A B ,and S

A Limiting reactant

Ca, C, Cs  Concentration of A, B, and
S (mole/cm?)

Ca, Cp,y Cs, Initial concentration of A,

o B, and S (mole/cm?)

Ca, Csg, Cs Arithmetic average com-
position of A, B, and S
{(mole/ecm3)

F Total flow rate (cm?/sec)

k Rate constant [(cm3)*/sec
mole™™]

K, Ks Adsorption constant for A

and S (em3/mole)
M Cp,/Ca,
Reaction order
Reaction rate (mole/cm? sec)
Average reaction rate for the
reactor (mole/em? sec)
7 Reaction rate at z = 0.5z,
(mole/em?® sec)

=3

(S.E.) Systematic error defined by
Eq. 3)

Vr Reactor volume (cm?)

W Mass of catalyst (g)

T Conversion, defined for the
limiting reactant A

Te Exit conversion for
reactant A

xd Maximum or equilibrium

conversion for reactant A
', Relative conversion, = x./z}

THE EXPRESSION OF THE
SYSTEMATIC ERROR

When the differential method is used to
find the rate equation, it is usual to correlate
the measured reaction rate data with the
arithmetic average composition between
entrance and exit of reactor instead of
initial composition because conversions,
although small, are finite. On this basis, an
expression for the systematic error is de-
veloped. The assumptions made in this
development are as follows:

(1) The reactor operates isothermally.

(2) Plug flow is ideal.

(3) Flow rate is constant along the
reactor.

(4) Products of reaction are not present
in the feed. This restriction is not necessary
where product concentrations do not appear
in the rate equation.

(5) Stoichiometry is

aA +B=sS+4 - - ..

Equation (1) is used to represent the true
kinetic relation between reaction rate and
composition

r = f(C4,Cs,Csy . . .) (1)

This relationship holds at any point in the
reactor and, since composition changes from
point to point, 7 is not constant but varies to
some extent along the reactor. Then, the
measured value of reaction rate 7, is an
average value for the whole reactor; 7 is
written in terms of the exit conversion as
follows.

Number of moles converted per unit time
Reactor volume

_ F C Aole

-5

F =
(@)

In general, the true kinetic relationship
given by Eq. (1) does not hold strictly
between the average reaction rate 7 and the
arithmetic average composition, and then
a systematic error is introduced when the
differential method is applied to analyze
data from reactors operated at finite con-
version. The systematic error can be evalu-
ated by comparison of the average reaction
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rate ¥ with the true local reaction rate 7 at
the point where composition is just the
arithmetic average value, where z = z./2.

(3)

F—F

(8.E.) = 7

-1

==

To compute (S.E.) according to Eq. (3),
7 is taken from Eq. (1) for x = z./2, and 7
from Eq. (2) with the aid of the design
equation for plug-flow tubular reactors
[Eq. (4)].
VR ~ /,zg@ N /2L dl’ (4)
FCAQ 0 r 0 f(CA)CPuCS; LI ')
Then Eq. (3) becomes

(S.E) = / [f(C'A,C'B,C*s, o

where

Cy = Ca(1 — 0.52.);
CB = CBQ - 0.59569;
a

= S

Cs =Cs+ 05 g e

ILLUSTRATIVE EXAMPLE: For a rate model
of the type r = k{(C4)", Eq. (5) becomes

tion of the type r = kC,Cy the error is not
a funetion of conversion only, but depends
also on the ratio M = Cg,/C,,. As shown in
Tig. 2 (S.E.) ranges between two limiting
curves correspondingto M = «w and M = 1,
which coincide with that for n = 1 and
n = 2 in Fig. 1.

First and second order reversible kinetics
have been considered; for the first order one
(8.E.) is equivalent to that for the first
order irreversible case but z’. (conversion
relative to equilibrium)} appears instead of
Te.

For the case of the second order reversible
reaction (8.E.) does not depend on relative

” dx
‘% f(Cs,Ca,Cs, - - .>] -1 (5)
Cy = Ca(l — )
o = Cn = 5o (6)

Cs = Cq + s Casr

conversion only, but also on the equilibrium
conversion, «f, itself, as shown by Eq. (11),

., Ty dx
(S.E) = xe/ {k[CAu(l — 0.5z.)] L m} -1

Te

T =05z In[1/(1 — 20)]

xe(l _ n)

— 1 whenn = 1

T (1= 0521 — (I — o)1

Equation (5) is valid also for batch or
heterogeneous catalytic tubular reactors,
since the design equations for these systems
are like Eq. (4) provided that reaction time
or {(W/F) is used instead of (Vg/F).

Resurrs AnND Discussion

Table 1 [which includes Egs. (8)—(14)]
summarizes results similar to Eq. (7) for
different types of kinetic models, which are
plotted on Figs. 1 to 5. Figure 1 shows that
for rate equation r = k(C,)*, the error
remains below 19, up to conversions of 159
to 209, for n' < 2. For the case of rate equa-

-1 when 7 # 1

and ranges between two limiting functions:
as z — 1, (S.E.) obviously approaches that
for second order irreversible case. On the
other hand, as 2 — 0, Eq. (11) becomes
im

Im s E)

= {2x’e / 1 — (0.52/,)?] In ﬁi} —1
1 -2
(15)
Figure 3 shows that even for this case rela-
tive conversion can be as high as 159,
without substantial error.
Equations (12), (13), and (14) give (S.E.)
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Fic. 1. Systematic error versus exit conversion for rate model: r = k(Cy)n.
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Fia. 2. Systematic error versus exit conversion for rate model: r = kCaCs.
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Fia. 3. Systematic error versus exit conversion for rate model: r = k(Ca)?—kCrCs (Cr, = Cs, = 0).
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Fia. 4. Systematic error versus exit conversion for rate model: r = kCa/(1+KsCus).
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Fic. 5. Systematic error versus exit conversion for rate model: r = kCx/(1+KsCs) (Cs, = 0).

for several of the simplest and more repre-
sentative models of the Langmuir Hinshel-
wood type. Figure 4 shows that for r =
ECA/(14-KACy), (S.E.) ranges between that
corresponding to first and zero order homo-
geneous irreversible kinetics as the parameter
(K aC4,) varies from zero to infinity. Equa-
tion (13) corresponds to a case with adsorp-
tion of one of the reaction products and is
plotted on Fig. 5. For this case (S.E.) ap-
proaches that of first order kineties as
(KsCa,) tends to zero, and when this param-
eter becomes very large, Eq. (13) tends to
the following limiting function:
lim

(KeCn) o = (8.E.)
{xe2/2(1 — 0.5z.) [ln 1= %]}
—1 (16)

As shown by Fig. 5 even for this limiting
case (S.E.) remains rether small up to
conversions of 5% to 7%, no matter how
large (KsCa,) becomes. This is a striking
result because in this case, the large variation

1

of reaction rate even for very low conversions
would suggest that the differential method is
only applicable if the exit conversion is
nearly zero, and the permissible range of 59
to 7% was not to be expected. Hence, the
magnitude of the relative variation of
reaction rate is not a criterion to decide
whether or not the differential method can
be applied.

Equation (14) gives the expression of
(8.E.) for the simplest case of simultaneous
adsorption of a reactant and a reaction
product. As this is a combination of the two
cases considered previously, it can be shown
that (S.E.) ranges between that for zero
order rate equation and the limiting function
given by Eq. (16) as the parameters (K,C,,)
and (KsCa,) vary from zero to infinity.

It may be concluded that the differential
method can be used to establish the rate
equation even for rather large conversions,
without introducing serious error. This fact
modifies substantially the general criterion
about differential reactors.
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