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The error introduced by using the differential method to handle react’ion rate data from 
reactors operated at finite conversion in order to establish the rate equation is considered. 

A general method of evaluating this error is developed and several of the more typical 
kinetic models are analyzed. The results show that even for reversible reactions and for 
kinetics of the Langmuir-Hinshelwood type with strong adsorption of reactants or plod- 
~xts the diferential method can be used up to rather large conversions, about 1.5y0 for 
most cases. 

Although the results are developed for plug-flow tubular reactors, they call easily be 
extended to batch zystems. 

Differential reactors are frequently pre- 
ferred in carrying out kinetic studies in flow 
syst,ems because the differential method 
of handling reaction rate dat’a is more simple, 
direct, and sensitive than the integral 
method (1, 2). Strictly speaking, no real 
reactor is differential since it must be oper- 
ated at finite conversion, so, “differential 
reactors” are only an approach to the con- 
cept of differential react’or. 

Not too much attention has been given 
to the problem of getting a criterion to 
establish whether a reactor can be considered 
as different’ial from a practical point of view. 
There are two limiting situations: operation 
at relatively large conversions impairs the 
concept of differential reactor and so in- 
creases the systematic error introduced when 
the different’& method is used to analyze 
the reaction rate data. On the other hand, 
decreasing conversion to very small values 
usually increases the experimental error to 
undesirable values. Then the necessity 
arises of setting a suitable range of con- 
versions to operate in the experimental 
work, and it can be done by determining the 
systematic error as a function of conversion 
and taking into account, the effect of con- 
version on the experimental error of mea- 

sured rea&ion rates for a given system. 
The magnitude of that systematic error 

has been considered by l’auls (3) for the 
rate equation for the hydrogenation of 
ethylene 

De Tar and Day (4) studied this error but 
for rate models of little use in chemical 
engineering. 

In the present paper, a general method 
of evaluation of the systematic error is 
developed and applied to several of the 
more typical kinetic models in chemical 
engineering. 

Considering that it is impossible to carry 
out a completely quantitative t,reatment 
including the numerous variables involved, 
some restrictions are assumed, as pointed 
out below. Among them, isothermal oper- 
ation is by far the most severe one. Due to 
the exponential effect of temperature on 
reaction rate, in many cases thermal effects 
can be a more restrictive criterion than 
conversion level in determining the errors 
involved in differential reactor operation and 
much care should be taken with respect to 
t,his point. 

However, the magnitude of temperature 
61 
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gradients inside laboratory tubular reactors THE EXPRESSION OF THF. 
is not fixed by conversion level only, and SYSTEMATIC ERROR 
very often it can be reduced to reasonable 
values by using a small reactor diameter 

When the differential method is used to 

and proper dilution of reactants in the feed. 
find the rate equation, it is usual to correlate 

For the case of heterogeneous gas-solid 
the measured reaction rate data with the 

catalytic reactions, temperature gradients 
arithmetic average composition between 

can also be reduced by strong dilution of the 
entrance and exit of reactor instead of 

catalyst with particles of an inert solid, in 
initial composition because conversions, 

order to make smaller the heat generation 
although small, are finite. On this basis, an 

per unit volume of bed. 
expression for the systematic error is de- 

The following development was made to 
veloped. The a,ssumptions made in this 

help to choose on a rational basis the range 
development are as follows. . 

of conversions to operate in a real differential (1) The reactor operates isothermally. 
reactor. Although the development has been 
made for plug flow tubular reactors, the 

(2) Plug flow is ideal. 
(3) Flow rate is constant along the 

results can be extended to batch systems. reactor. 
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A 
CA, CB, CS 

CAa, CBo, CS, 

CA, CR, c, 

F 
k 

KA,& 

M 

n 
r 
f 

i 

(S.E.) 

TiR 

w 

x 

NOMENCLATURE 
Stoichiometric coefficients for 

A, B, and S 
Limiting reactant 
Concentration of A, B, and 

S (mole/cm3) 
Initial concentration of A, 

B, and S (mole/cm3) 
Arithmetic average com- 

position of A, B, and S 
(mole/cm3) 

Total flow rate (cm3/sec) 
Rate constant [ (cn13)n-1/sec 

mole”-‘] 
Adsorption constant for A 

and S (cm3/mole) 
cBo/cA, 
Reaction order 
Reaction rate (mole/cm3 see) 
Average reaction ra,te for the 

reactor (mole/cm3 see) 
Reaction rate at x = 0.52, 

(mole/cm3 set) 
Systematic error defined by 

Eq- (3) 
Reactor volume (cm3) 
Mass of catalyst (g) 
Conversion, defined for the 

limiting reactant A 
Exit conversion for 

reactant A 
Maximum or equilibrium 

conversion for reactant A 
Relative conversion, = X,/X$ 

(4) Products of reaction are not present 
in the feed. This restriction is not necessary 
where product concentrations do not appear 
in the rate equation. 

(5) Stoichiometry is 

aA+bB=sS+.... 

Equation (1) is used to represent the true 
kinetic relation between reaction rate and 
composition 

7” = f(CA,CB,CS, . . *> (1) 

This relationship holds at any point in the 
reactor and, since composition changes from 
point to point, r is not constant but varies to 
some extent along the reactor. Then, the 
measured value of reaction rate f, is an 
average value for the whole reactor; P is 
written in terms of the exit conversion as 
follows. 

F= Number of moles converted per unit time 
Reactor volume 

= FE?&& (2) 

In general, the true kinetic relationship 
given by Eq. (1) does not hold strictly 
between the average reaction rate P and the 
arithmetic average composition, and then 
a systematic error is introduced when the 
differential method is applied to analyze 
data from reactors operated at finite con- 
version. The systematic error can be evalu- 
ated by comparison of the average reaction 
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rate Z with the true local reaction rate + at 
t.he point where composition is just the 
arithmetic average value, where x = xJ2. 

(S.E.) = ‘+ = f _ 1 (3) 

To compute (S.E.) according to Eq. (3), 
+ is taken from Eq. (1) for x = x,/2, and r 
from Eq. (2) wit,h the aid of the design 
equation for plug-flow tubular reactors 
Ph. (411. 

Then Eq. (3) becomes 

tion of the type r = ~CACB the error is not 
a function of conversion only, but depends 
also on the ratio M = C,,/C,,. As shown in 
Fig. 2 (S.E.) ranges between two limiting 
curves corresponding to M = ~0 and M = 1, 
which coincide with t’hat for n = 1 and 
n = 2 jn Fig. 1. 

First and second order reversible kinetics 
have been considered; for the first order one 
(S.E.) is equivalent to t’hat for the first 
order irreversible case but x’, (conversion 
reIative to equilibrium) appears instead of 
Xe. 

For the case of the second order reversible 
reaction (S.E.) does not depend on relative 

(S.E.) = X?/ [,,c*,c,,i.,. . . .) [j(c*,cBy;s, . . .,I - 1 (5) 

where 

CA = C&(1 - 0.52,); CA = CA”{1 - x) 

CB = clro - 0.5 ; x,; b 
cg = C& - -$AJ (6) 

6s = Cs,, + 0.5 $xe; CS = CSs + f CA& 

ILLUSTRATIVE EXAMPLE: For a rate model conversion only, but also on the equilibrium 
of the type T = k(CA)“, Eq. (5) becomes conversion, xl, itself, as shown by Eq. (ll), 

WE.1 = xe/ {W~odl - o.sx,)]~ lo’.kLCA,(~B xlln} - 1 

(1 - O.Sx,),q;l[l/(l - x,)] - 1 
when n = 1 

xe(l - n) = 
(1 - 0.5x,)9 - (1 - x,)1-*] - l 

when n # 1 

(7) 

Equation (5) is valid also for batch or 
heterogeneous catalytic tubular reactors, 
since the design equations for these systems 
are like Eq. (4) provided that reaction time 
or (W/F) is used instead of (YE/P). 

RESULTS AND DISCUSSION 

Table 1 [which includes Eqs, (8)-(14)] 
summarizes results similar to Eq. (7) for 
different types of kinetic models, which are 
plotted on Figs. 1 to 5. Figure 1 shows that 
for rate equation r = k(CA)“, the error 
remains below 1% up to conversions of 15y0 
to 20% for n I 2. For the case of rate equn- 

and ranges between two limiting functions: 
as x$ + 1, (S.E.) obviously approaches that 
for second order irreversible case. On the 
other hand, as x$ + 0, Eq. (11) becomes 

lim (SE.) 
z-0 

= 2x’, 
1 ! 

[l - (0.52’,)2] In E\ - 1 
e 

(15) 
Figure 3 shows that even for this case rela- 
tive conversion can be as high as 15% 
without substantial error. 

Equations (la), (13), and (14) give (S.E.) 
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FIG. 1. Systematic error versus exit conversion for rate model: T = k(C*)n. 
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. 2. Systematic error versus exit conversion for rate model: r = kCACB. 
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Fro. 3. Systematic error versus exit conversion for rate model: r = k(c~)~--k’cRc~ (CR0 = cs, = 0). 

0.00 

-0.02 

2 -0.04 

-0.08 

-0.10 I I I I I I I \I 1 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

CONVERSION 

FIQ. 4. Systematic error versus exit conversion for rate model: T = ~CA/(~+KACA). 
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FIG. 5. 
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Systematic error versus exit conversion for rate model: T = kCA/(l+K&s) 

for several of the simplest and more repre- 
sentative models of the Langmuir Hinshel- 
wood type. Figure 4 shows that for r = 
ECA/(~+KACA), (S.E.) ranges between that 
corresponding to first and zero order homo- 
geneous irreversible kinetics as the parameter 
(KACAJ varies from zero to infinity. Equa- 
tion (13) corresponds to a case with adsorp- 
tion of one of the reaction products and is 
plotted on Fig. 5. For this case (S.E.) ap- 
proaches that of first order kinetics as 
(K~CA,) tends to zero, and when this param- 
eter becomes very. large, Eq. (13) tends to 
t,he following limitmg funct,ion: 

= {X2/2(1 - 0.5X,) lnAe - 5, 
[ I) 

- 1 (16) 

.4s shown by Fig. 5 even for this limiting 
case (S.E.) remains rather small up to 
conversions of 5% to 7%, no matter how 
large (K&A,) becomes. This is a striking 
result because in this case, the large variation 

(Ce, = 0) 

of reaction rate even for very low conversions 
would suggest that the differential method is 
only applicable if the exit conversion is 
nearly zero, and the permissible range of 5% 
to 7Yo was not to be expected. Hence, the 
magnitude of the relative variation of 
reaction rat,e is not a criterion to decide 
whether or not the differential method can 
be applied. 

Equation (14) gives the expression of 
(S.E.) for the simplest case of simultaneous 
adsorption of a reactant and a reaction 
product. As this is a combination of the two 
cases considered previously, it can be shown 
that (S.E.) ranges between that for zero 
order rate equation and the limiting function 
given by Eq. (16) as the parameters (KACAa) 
and &CA,) vary from zero to infinity. 

It may be concluded that the differential 
method can be used to establish the rate 
equation even for rather large conversions, 
without introducing serious error. This fact 
modifies substantially the general criterion 
about differential reactors. 
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